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ABSTRACT 

The software industry produces a large volume of data in the form of application logs. This data is useful since it can help 
debug issues in production, provide many hidden insights and is a treasure trove for data scientists and researchers. The 
volume of the data, however causes multiple issues with querying, storage and maintenance over a period of time. In this 
paper, we share the architecture and the steps we implemented for efficiently storing the application logs based on the 
data requirements from our partners and also discuss various optimization techniques adopted.  
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1. INTRODUCTION 

In this paper, we describe an efficient method of data management for large volumes of application logs that 
a software company generates, with techniques on how to enable efficient querying and automatic 
management of the data without compromising on the query time and storage efficiency.  

To illustrate the scale of the system at Salesforce, we provide some statistics for the same: in the year 
2016, we processed more than 3 PB of data, which contained important information that needed to be 
analyzed and queried by our internal customers and data scientists.  

This paper is organized as follows: in section 2 we explore related works in this domain and compare 
those with our implementation. Section 3 describes the key technologies we used and why they were chosen, 
In Section 4, we discuss architecture of our workflow. We describe some of the key optimizations we 
implemented in our system in Section 5. We propose some improvements to the system in Section 6 and 
conclude in Section 7.  

2. RELATED WORK 

As part of the research for this implementation, we looked into sample implementations where log records 
were analyzed and made available for consumers. Mavridis and Karatza (2015) discuss how logs can be 
efficiently processed using Hadoop and Spark, but their focus is mainly on comparing the two technologies 
and benchmarking their performance. In our work, we offer a fully automated solution with architecture and 
optimizations that can be replicated and deployed at any software company for the purpose of efficient log 
management, reduction of query times and disk space usage optimization being few of the benefits offered by 
our methodology. Beitzel et al (2004) in their paper discuss the methods they used for the analysis of a 
categorized web application logs. The techniques they used involved examining the logs over hourly periods 
and narrowing down the patterns over the course of a day. They examined the popularity trends and other 
statistics at an hourly rate, whereas in our work we examine the entire dataset and allow the users the 
flexibility to query for any period of time and discover the patterns in the logs. We also focus on automation 
and optimization more than the pattern recognition and popularity of topics in the various log lines and allow 
users to query and discover the patterns rather than surfacing them upfront.  
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3. KEY TECHNOLOGIES 

We chose Apache Oozie as a workflow management system because of the multiple capabilities it offered in 
terms of scalability, scheduling and ease of use. Oozie is an open source workflow engine that is specialized 
in executing workflow jobs with actions that execute MapReduce, Pig, Hive and Java jobs. A key benefit 
with Oozie was the flexibility to wait for the input data sets. In case the data for a particular date was delayed 
or not available, the Oozie job would not run and produce incorrect or incomplete output. Instead it would 
wait for the input data to be available and execute the workflow only if that condition is successful. This 
coupled with an internal retry logic and the ability to parameterize the execution of jobs based on time stamps 
were the main reasons for choosing Oozie. In their research paper Islam M. et al (2012) discuss that the key 
features of Oozie in detail. Oozie also provided the flexibility to configure and launch jobs for a long period 
of time (a year) that execute as and when the input dataset becomes available on a day to day basis.  

Parquet is a columnar format that provides multiple advantages over raw files. Parquet provides us the 
benefit of compression and encoding which leads to disk space usage savings and also reads only the 
necessary columns while querying the data which provides memory savings. This format also provides 
schema evolution which is crucial since we may get log lines in the following releases where the schema has 
changed and we would be able to handle this change seamlessly. As mentioned in the research from Bisoyi et 
al (2017), it is a tough choice between Optimized Row Columnar format (ORC) and Parquet considering 
performance but in our case the storage optimizations offered by Parquet were more valuable than the read 
optimizations offered by ORC format.  

Apache Hive is a data warehouse that facilitates reading, writing and managing large datasets residing in 
distributed storage and queried using SQL syntax. Hive also provided us with the flexibility of easily loading 
data from Parquet by means of external tables. The only requirement was that the location of the external 
table partition had to be specified. Our log data was originally stored in the ORC format then later switched 
to Parquet format considering space and query optimizations.  

4. ARCHITECTURE OF THE JOB 

The job consists of on an Oozie workflow that contains 4 different Oozie actions. First is the decisionNode, 
where we decide whether to clean up the existing data present at an output location. If the job is determined 
to be a catchup job (which aims at collecting late arriving data) then we do not delete the existing output 
folder. Otherwise, we assume that the folder contains old or invalid data and delete the folder and its data 
contents.  

The next step consists of a MapReduce action. This task takes the raw log as input data and a set of log 
record types which are needed by downstream consumers for analysis and returns Parquet files in the 
compressed format (GZIP compression) as output. We use GZIP instead of Snappy as the space savings for 
GZIP format were in the range of 65% in comparison to Snappy. 

The mapper has access to a list of log record types which is interpreted from a property file that consists 
of a list of key log record types requested by our consumers. The map task reads only those log record types 
and emits a key value pair with the hostname as the key and the logline as the value. The reducer has access 
to release schema files which contain a standard format for each release. This aids in creating a uniform 
schema and we also take extra precautions to collect extra fields that are added by different upstream users in 
the spirit of data completeness. The reducer builds a pig tuple, based on the already existing information it 
obtained from the schema information and stores the extra fields as well. The fields are stored in the form of 
a bytearray to maintain easy interoperability. We maintain an internal mapping from the Parquet schema to 
the Hive schema in the code. The Hive schema is created based on this internal field mapping and data is 
entered from each field in the Parquet schema. The final output of the map reduce job is a set of Parquet files 
compressed in GZIP format.  

The third step is a Hive action. The data created in the map reduce action needs to be recognized by Hive 
as a partition and to enable this we run an alter table command to add the new partitions generated as part of 
the map reduce action.  

The final step is a validation action. Each job needs to be validated against the source on its correctness. 
The jobs may run into multiple issues, may lose data or contain corrupt records and we do not want our 
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customers to have their jobs running on incomplete or incorrect data. The validation job serves this purpose. 
It validates the correctness of the produced data with the source and sends an email alert for notifying the 
team in case the validation does not pass. Figure 1 below illustrates all the actions in the form of a detailed 
architecture diagram 

 

 
Figure 1. Architecture Diagram 

5. OPTIMIZATIONS TO MAPREDUCE TASK 

In the initial stages, the map reduce job used to take significant amount of time to complete for each 
datacenter, about 20 hours. This was problematic since it would cause a significant lag and impede efficient 
log processing for the organization. Hence, we conducted multiple experiments to optimize the job 
completion times. For MapReduce jobs, a key suspect for long running jobs are inefficiently distributed 
mapper keys and is termed as a data skew, which is explained by Kwon et al (2013). An important 
investigation in this case would be to modify the map keys so that they are evenly distributed and your 
reducers receive an even distribution of keys to process. This phenomenon can be detected by observing 
completion times for the reducers. If you observe some reducers completing in few minutes whereas others 
take multiple hours to complete, then it is a clear indication of data skewness. Once we modified the logic to 
achieve an even distribution of keys, the job run times were reduced to 2 hours. 

Another important optimization is to tweak the memory allocated to mappers and reducers. Examining 
the counters and physical memory utilized by the Hadoop jobs can give valuable insights into the amount of 
memory needed. The parameters that you should look at are mapreduce.map.memory.mb, which is the upper 
limit that Hadoop allocates to its mappers and similarly mapreduce.reduce.memory.mb for the reducer.  
If you have simple mapper jobs and complex reducer jobs, the memory assignment should take this  
into account. Other properties that help in job optimizations are mapreduce.map.java.opts, and 
mapreduce.reduce.java.opts. These properties control the amount of maximum heap memory allocated to the 
Java process running inside the mapper and reducer respectively. We also tweaked the 
yarn.scheduler.minimum-allocation-mb, which controls the minimum amounts of RAM increments that the 
Resource Manager can allocate to containers so that the increments did not need to be in terms of the default 
1024 MB and granted us more flexibility.  

6. FUTURE WORK 

The current data management technique is susceptible to schema changes as the current Parquet schema we 
use is fixed and a change in the log file format (addition of new log fields) would cause the system to ignore 
the updates. Though Parquet has the schema evolution feature available, due to limitations of our experiment 
and time constraints, this has not yet been incorporated. This is a beneficial and critical feature for this 
project to be future proof and compatible with later versions of log files. Currently, the job is constrained 
based on the schema and fields that are predefined, but if we build and utilize capability to incorporate a 
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dynamic schema, then it would be easy to include new fields and consume metadata for logs and hence 
improve the runtime further. As per Mehmood et al in (2016), exploring alternate options like Impala in place 
of Hive also look promising due to the benefits it offers with the Parquet file format. 

7. CONCLUSION 

The data management technique illustrated in this paper has been beneficial to Salesforce for optimizing disk 
space consumption and improving query processing times while keeping the data available for partners and 
customers to query efficiently.  

We have discussed the job architecture, optimizations and storage format for data management and also 
suggested areas in which the data management model could potentially improve.  
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